Biosynthesis and degradation of nodule-specific Rhizobium loti compounds in Lotus nodules.

نویسندگان

  • D B Scott
  • R Wilson
  • G J Shaw
  • A Petit
  • J Tempe
چکیده

Two nodule-specific Rhizobium loti compounds were identified in Lotus tenuis and Lotus pedunculatus nodules induced by strain NZP2037. One, a silver nitrate-positive cation called rhizolotine, has been characterized as the riboside of a novel alpha-hydroxyimino acid containing a 1,4,5,6-tetrahydropyrimidine ring (G. J. Shaw, R. D. Wilson, G. A. Lane, L. D. Kennedy, D. B. Scott, and G. J. Gainsford, J. Chem. Soc. Chem. Commun., p. 180-181, 1986), and the other, yellow-1, stains yellow with ninhydrin. Both compounds were degraded by R. loti NZP2037 but not by strains of Rhizobium meliloti, Rhizobium trifolii, or Agrobacterium tumefaciens. Under the conditions tested neither compound was able to serve as a sole source of C or N for growth of R. loti NZP2037. Rhizolotine and yellow-1 were found in nodules from a range of different legumes inoculated with NZP2037, suggesting that the Rhizobium and not the host plant determines their synthesis. Neither compound was found in nodulelike structures of L. pedunculatus induced by transposon Tn5-induced noninfectious (Inf-) mutants of NZP2037 or in similar structures induced by a transconjugant of NZP2037 containing the symbiotic (Sym) cointegrate plasmid pPN1 of R. trifolii. Both compounds were also absent in the ineffective nodules induced by the bacterial-release-negative (Bar-) mutant, strain PN239. However, both compounds were present in nodules induced by the fixation-negative (Fix-) mutant PN235 and in Fix+ nodules formed by a plasmid-cured derivative of NZP2037. These results would suggest that infection and bacterial release from the infection thread are necessary for nodule (symbiotic) synthesis of these compounds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Delayed maturation of nodules reduces symbiotic effectiveness of the Lotus japonicus–Rhizobium sp. NGR234 interaction

Lotus japonicus, a model legume, develops an efficient, nitrogen-fixing symbiosis with Mesorhizobium loti that promotes plant growth. Lotus japonicus also forms functional nodules with Rhizobium sp. NGR234 and R. etli. Yet, in a plant defence-like reaction, nodules induced by R. etli quickly degenerate, thus limiting plant growth. In contrast, nodules containing NGR234 are long-lasting. It was ...

متن کامل

LjnsRING, a novel RING finger protein, is required for symbiotic interactions between Mesorhizobium loti and Lotus japonicus.

Nodule-specific (nodulin) genes are thought to play crucial roles during establishment of the nitrogen-fixing symbiosis between legume plants and Rhizobium bacteria. On the basis of a gene expression database for early stages of the nodulation process of Lotus japonicus, previously constructed by a cDNA macroarray analysis, we identified a novel nodulin gene, LjnsRING, which encodes a protein w...

متن کامل

Bacterial surface polysaccharides and their role in the rhizobia-legume association

The establishment of a nitrogen-fixing symbiosis is an economically important plant phenomenon. Biological reduction of dinitrogen to ammonia is among the most effective fixation systems facilitating the plant growth in nitrogen starved soils without the requirement of massive inputs of fertilizers. This process occurs in legumes roots in structures called nodules. Nodule development is induced...

متن کامل

RNAi knock-down of ENOD40s leads to significant suppression of nodule formation in Lotus japonicus.

ENOD40 is one of the most intriguing early nodulin genes that is known to be induced very early in response to interaction of legume plants with symbiotic Rhizobium bacteria, but its function in the nodulation process is still not known. Lotus japonicus has two ENOD40 genes: LjENOD40-1 is abundantly induced in very early stages of bacterial infection or Nod factor application, whereas LjENOD40-...

متن کامل

A Legume Genetic Framework Controls Infection of Nodules by Symbiotic and Endophytic Bacteria

Legumes have an intrinsic capacity to accommodate both symbiotic and endophytic bacteria within root nodules. For the symbionts, a complex genetic mechanism that allows mutual recognition and plant infection has emerged from genetic studies under axenic conditions. In contrast, little is known about the mechanisms controlling the endophytic infection. Here we investigate the contribution of bot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 169 1  شماره 

صفحات  -

تاریخ انتشار 1987